
On the other side, the cognitivists focused on the high-level 
abstract rationality found in humans: mathematics, language, and 
problem-solving. This field grew out of the formalization of logic 
and mathematics in the early twentieth century, including Alan 
Turing’s insights into mechanical computation. The result was a 
tradition of computer programs—called “virtual machines”—that 
communicated, solved puzzles, played games, and reasoned out 
solutions under uncertainty. Cognitivists dominated the last half of 
the twentieth century, providing many of the programming lan-
guages, operating systems, and search strategies still in use today. 

This timeline tries to lay out these histories, highlighting the 
ways these different traditions have overlapped but also diverged, 
united by the technology of computers but divided by mathemat-
ics, philosophy, and general outlook. The timeline illuminates the 
amazing successes of each field but also notes the limitations, 
failures, and disappointments. Nevertheless, the takeaway is that 
immense progress has been made over the last one hundred 
years: in 1920, not a single computer existed anywhere, and AI was 
as fictional as conjuring life out of clay. Today, AI is ubiquitous, 
integrated into our cameras, cars, phones, and buildings. The world 
around us is now thinking—and getting smarter every minute.   

Introduction 

The psychologist Edwin Boring once noted that the history of 
psychology is short, but it has a long prehistory. The same is true 
of artificial intelligence, and much of its history overlaps with 
that of psychology since both fields explore intelligence. But AI 
also explores the artificial—the artifacts made by gods, artists, 
magicians, and scientists capable of thought. In this sense, the 
prehistory of AI includes everything from philosophy to religion, 
mathematics to magic, science to art.

The field received its contemporary form—and the appella-
tion artificial intelligence—in the twentieth century with a host 
of scientific discoveries. There are (at least) two main traditions 
of thinking machine: the biologically inspired and the cognitivist. 
The former arose in cybernetics, which explores how beings 
self-regulate using negative feedback from the environment—
in effect, learning to preserve oneself by responding to external 
stimuli. The result was the creation of mechanical beings mod-
eled on the body, the brain, and the process of adaptation. 
This research has led to the contemporary work in deep neural 
networks, machine learning, and robotic vacuum cleaners.

AI Timeline
Compiled by Jake Browning and Philipp Schmitt

FAMSF_UncannyValley_Interior_BLUES_180220_WM.indd   172FAMSF_UncannyValley_Interior_BLUES_180220_WM.indd   172 18.2.20   10:5318.2.20   10:53



173AI Timeline

1914
■ The engineer Leonardo Torres y Quevedo 
builds El Ajedrecista (the Chess Player), the first 
chess-playing automaton. The machine is limited 
by playing only king and king-and-rook endgames.  

2. Scene from the 1938 BBC Television production of Karel Čapek’s 1920 play R.U.R.

3. Replica of Konrad Zuse’s 1941 Z3 computer, Deutsches Museum, 
Munich, 2006

1920
■ In his play R.U.R. (Rossum’s Universal Robots), 
Karel Čapek introduces the term “robot,” which 
roughly translates to “serf” or “slave” in Czech (fig. 2). 
The play portrays a dystopian world where synthetic—
but also biological—beings rebel against humanity.  

1927
■ The electrical engineer Harold S. Black devel-
ops the concept of “negative feedback,” the idea 
that feeding destabilizing output back into a system 
can return it to equilibrium. The concept of a 
self-stabilizing system, an essential feature of bio-
logical systems, also has application in mathemat-
ics and engineering.  
■ Fritz Lang’s silent film Metropolis, which features 
a machine urging a workers’ rebellion, marks the first 
on-screen depiction of a mechanical automaton.   

1936
■ Alan Turing introduces the thought experiment 
of an “automatic machine,” later dubbed the Turing 
machine. The model is composed of a potentially 
infinite tape consisting of discrete symbols (the sys-
tem’s memory); an executor that can read, erase, 
and write symbols (the computer’s processor); and 
a control that provides instructions for what to do in 
response to each symbol (the program). Despite its 
simplicity, the Turing machine demonstrates that 
any algorithm that can be solved by a computer can 
be handled by this simple machine.  

1938
■ Konrad Zuse finishes building the Z1, the first 
working mechanical computer. A few years later, 
Zuse completes the Z3, the first programmable digi-
tal computer (fig. 3). The Nazis, who do not see value 
in the device, refuse funding for it. The Z3 is later 
destroyed by a bomb in 1943, during World War II.   

1942
■ The science-fiction writer Isaac Asimov pub-
lishes the short story “Runaround” in the magazine 
Astounding Science Fiction. In the story, the char-
acters postulate “three laws of robotics”: (1) a robot 
cannot harm or allow harm to a human, (2) a robot 
must obey humans unless their command violates 
the first law, and (3) a robot should preserve its own 
existence unless doing so violates the first or sec-
ond law. Later, Asimov includes the story in his 1950 
collection, I, Robot (fig. 4).  

1943
■ Colossus, the first programmable computer 
developed for the Allied powers of World War II, is 
designed by Tommy Flowers and Alan Turing and 
built in Bletchley Park, UK. The Allies use the 
machine to crack the German Enigma code and 
hasten the end of the war. 
■ The neuroscientist Warren McCulloch and the 
logician Walter Pitts describe an electrical “neuron” 
that, like the biological neuron, is a node that 
receives excitatory and inhibitory signals from mul-
tiple different inputs. The relative strengths of the 
signals are added up and, based on whether the 
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communication is that of reproducing at one point, 
either exactly or approximately, a message selected 
at another point.” The problem of information theory 
is fundamentally mathematical: Ignoring what is 
being said (the “content”), how much information—
only in terms of the measurable amount (the 
“bits”)—is needed to communicate a message? 
Shannon’s results establish a connection between 
noise and redundancy, an essential finding for tele-
phone services. They also provide for a theory of 
information that computer scientists and cyberneti-
cians find promising—although immediate applica-
tions are not apparent. 

1949
■ Donald Hebb’s book Organization of Behavior 
provides a neural theory of learning. His theory, 
often summarized as “neurons that fire together 
wire together,” proposes that neural connections 
can be strengthened by repeatedly firing at the 
same time. “Hebbian learning” becomes a key prin-
ciple for neural networks.  
■ In a memorandum circulated to some acquain-
tances, Warren Weaver proposes machine trans-
lation based on “the common base of human 

plan, and (4) reflect afterward on possible improve-
ments. The book also contains a set of heuristics for 
different options for problem-solving. How to Solve It 
becomes essential reading for mathematicians 
and AI researchers, especially concerning the role 
of heuristics.    

1947
■ At a talk at the London Mathematical Society, 
Alan Turing contends that the goal of computer 
research is to build a machine that learns from 
experience. Around the same time, he begins work 
on Intelligent Machinery, a manifesto on AI con-
cerned with building neural networks that learn. 

1948
■ Norbert Wiener’s publication of Cybernetics: Or 
Control and Communication in the Animal and the 
Machine establishes the field of cybernetics, the 
study of self-stabilizing “automatic control systems” 
in biological and mechanical beings.  
■ The information theorist Claude Shannon 
publishes “A Mathematical Theory of Communica-
tion,” the seminal text behind information theory. 
The paper begins, “The fundamental problem of 

sum hits some threshold, an output is released. The 
electrical neuron provides a mathematical model 
that, if structured correctly, can perform simple log-
ical operations, such as conjunction (A and B) and 
inclusive disjunction (A and/or B). This indicates 
that “neural networks,” consisting of multiple differ-
ent neurons, are capable of computation—an influ-
ential finding both for biology, since it suggests that 
brains might function like computers, and for AI, 
since it suggests that building electrical brains is 
possible.   

1945
■ John von Neumann (fig. 5) describes the von 
Neumann machine, which becomes the standard 
in computer architecture. The machine separates 
out the processor, which runs logical operations; 
the control unit, which runs program instructions; 
working memory store, which contains program 
instructions and current data (now called “RAM,” or 
“random-access memory”); and latent memory 
storage (now called “ROM,” or “read-only memory”).   
■ George Pólya publishes How to Solve It, which 
outlines four steps of problem-solving: (1) under-
stand a problem, (2) make a plan, (3) carry out the 

5. John von Neumann, whose 1945 theoretical description of the von Neumann machine set a 
standard in computer architecture, ca. 1952

4. Cover of Isaac Asimov’s collection I, Robot (1950), 
illustrating the story “Runaround,” which was first 
published in 1942
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communication—the real but as yet undiscovered 
universal language.” Weaver suggests that there 
is a shared vocabulary and grammar underlying 
every natural language—a kind of “language of 
thought,” or “mentalese.” This idea influences how 
language is investigated in both human and artifi-
cial intelligence and provides a vision for how to 
define “thought”: mental symbols with systematic, 
language-like structure.   
■ William Grey Walter develops the first autono-
mous electronic robot, known as “the tortoise,” 
demonstrating similarities between mechanical 
and biological organisms at the level of automatic 
control (fig. 6).  

1950
■ Alan Turing proposes the Turing test in his 
seminal essay on AI, “Computing Machinery and 
Intelligence.” For the test, a participant reads typed 
messages from two unknown partners—one 
woman and one man—both claiming to be women. 
Turing hypothesizes that the recipient will not be 
able to determine the gender of the message 
sender based on typed conversation alone. He then 
replaces one of the two partners with a machine 
and reruns the test, contending that if a machine 
can hold an intelligent conversation and not be dis-
covered as mechanical, it should be regarded as 
intelligent. 
■ In “Programming a Computer for Playing 
Chess,” Claude Shannon suggests two possible 
ways of solving a problem computationally: the 
type-A, or “brute force,” approach, in which the 
machine calculates as many different solutions as 
computationally possible and chooses the best 
path found; and the type-B, or “heuristic,” approach, 
in which the machine uses a few hand-coded gen-
eral rules that help it search only those pathways 
that are most likely to be fruitful. 

1951
■ Based on the McCulloch–Pitts model, Marvin 
Minsky, paired with Dean Edmonds, develops the 
Stochastic Neural Analog Reinforcement Calculator 
(SNARC), the first neural network (fig. 7). The system 
uses feedback to steer a machine toward more 
correct responses, suggesting that insights from 
cybernetics can be paired successfully with 
computers.   

1952
■ The first piece of literature created by AI is pro-
duced, using the computer scientist Christopher 
Strachey’s love letter algorithm (fig. 8).   

1954
■ IBM performs a widely publicized demonstra-
tion of a machine translating Russian sentences 

6. William Grey Walter’s cybernetic tortoise, ca. 1950

7. One of the forty neurons in the Stochastic Neural Analog Reinforcement Calculator (SNARC), 1951 

8. Artist rendering of a letter created by Christopher Strachey’s 1952 love letter algorithm
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9. Arthur Samuel with his checker player, 1956

10. The Mark I Perceptron, an implementation of Frank Rosenblatt’s 1957 neural 
network algorithm, Perceptron, Cornell Aeronautical Laboratory, Buffalo, 
New York, ca. 1958

into English. The machine has a limited vocabulary 
and a weak grasp of syntax, and can therefore only 
translate a handful of carefully selected sentences.   

1955
■ Arthur Samuel develops a checker player 
capable of self-improving play, which Samuel dubs 
“machine learning” (fig. 9). The machine assigns 
values to next moves based on looking ahead to 
probable board states for the next few steps. These 
numerical values are updated when strategies 
prove more successful than predicted, allowing the 
machine to perform progressively better over time. 

1956
■ The Dartmouth Summer Research Project on 
Artificial Intelligence takes place in Hanover, New 
Hampshire, bringing together mathematicians and 
engineers to explore the idea of thinking machines. 
The term artificial intelligence is coined by John 
McCarthy for the workshop.   
■ At the workshop, Allen Newell, J. C. Shaw, 
and Herbert Simon introduce the program Logic 
Theorist, which employs search trees and heuristics 
to generate proofs using the rules of logic and 
mathematics. The program mimics mental pro-
cesses used by mathematicians: recognizing a 
problem, attempting different strategies, and then 
executing strategies that achieve the result.   
■ At the MIT Special Interest Group in Information 
Theory symposium, essential papers on using com-
puters to study intelligence—a field later known as 
cognitive science—are presented, including work 
by Noam Chomsky on computational linguistics, 
Newell and Simon on the Logic Theorist, and G. C. 
Sziklai on computer vision. A central contribution 
is George A. Miller’s “The Magical Number Seven, 
Plus or Minus Two,” which provides a model of 
“chunking” in memory—up to seven digits can be 
remembered if they can be assembled into useful 
mnemonic groups. Miller’s result suggests that 
more information can be remembered if it is chun-
ked, an idea that becomes essential to information 
storage methods in computers. 

1957
■ The psychologist Frank Rosenblatt invents 
the Perceptron, a neural network algorithm based 
on work by McCulloch–Pitts and Marvin Minsky 
(fig. 10). The algorithm and the machines built to run 
it generate intense funding and media interest. In 
July of the following year, in an article titled “New 
Navy Device Learns by Doing,” the New York Times 
reports that the machine is expected to someday 
“walk, talk, see, write, reproduce itself and be con-
scious of its existence.” This leads to increased 
interest in biologically inspired work. The Percep-
tron is limited, however, by consisting of only a 

FAMSF_UncannyValley_Interior_BLUES_180220_WM.indd   176FAMSF_UncannyValley_Interior_BLUES_180220_WM.indd   176 19.2.20   8:1719.2.20   8:17



177AI Timeline

1959
■ The General Problem Solver (GPS) is created by 
Allen Newell, J. C. Shaw, and Herbert Simon. The 
GPS uses “instrumental,” or “means-ends,” reason-
ing: deciding on a final outcome at the start and 
then reasoning backward to determine the interme-
diate steps necessary to achieve that outcome. The 
program is general because it can solve any task 
the programmer stipulates, provided the machine 
knows all of the permissible operations needed to 
achieve the specified end state.  
■ The neurophysiologists David H. Hubel and Tor-
sten Wiesel discover “edge-detecting” neurons in 
cats, which fire only when exposed to lines at spe-
cific angles. The discovery suggests that biological 
vision decomposes images into discrete parts that 
can be processed separately, results used later in 
building computer vision.   
■ General Electric’s ERMA is introduced at Bank 
of America. The program is an automatic check-
processing system that reads the stylized numerals 
at the bottom of checks. ERMA uses template 
matching, effectively overlaying each input with a 
template and choosing the best fit.  
■ The AI Lab at MIT is founded by John McCarthy 
and Marvin Minsky. Today, this is called the Com-
puter Science and Artificial Intelligence Laboratory 
(CSAIL).   

1960
■ J. C. R. Licklider writes Man-Computer Symbio-
sis, which predicts an essential role for computers 
in improving human life, especially by mechanizing 
routine tasks and providing information for more 
efficient and improved decision-making. 
■ Donald Michie creates MENACE, a tic-tac-toe 
playing program that uses reinforcement learning, 
the process of training a machine through trial and 
error. Lacking the proper computer technology, 
Michie makes the program out of stacks of match-
boxes, each with a label indicating a specific move 
at a specific step in a possible game. Michie places 
a colored bead in each box depending on whether 
the move leads to victory or defeat. Over a long 
enough series of games, the program plays perfect 
games (i.e., always winning or drawing).  
■ Ray Solomonoff, in “General Theory of Inductive 
Inference,” outlines the key ideas behind algorith-
mic probability. He develops a formal specification 
that expresses the complexity of any problem in 
terms of the size of the computer program needed 
to solve it. This lays the groundwork for inductive, 
probabilistic computation. 

1961
■ The first industrial robot, made by the Unimation 
company, is deployed at a General Motors factory, 
assigned the dangerous task of die casting (fig. 12). 

■ McCarthy discusses the need for a machine 
to possess “common sense” if it is to learn as 
humans do. Common sense, in this context, refers 
to the immense body of background knowledge 
and know-how that is necessary for accomplishing 
some task. McCarthy’s program, Advice Taker, 
represents knowledge separately from the rules 
needed to solve the problem. The machine solves 
problems by both figuring out the necessary rules 
to achieve the result and consulting background 
knowledge to determine which subtasks therefore 
need to be performed. This project incites the quest 
for developing machines with common sense, a 
seemingly simple problem that remains largely 
unsolved today.   
■ Also at the Teddington Conference, Herbert 
Gelernter and Nathaniel Rochester present the 
Geometry Theorem Machine. The machine solves 
problems by initially specifying the end states of 
each possible problem-solving strategy and plot-
ting them on a grid. Any strategy that leads to an 
incoherent result—such as incompatible figures on 
the grid—can be excluded at the start. The program 
demonstrates that machines can solve problems 
not just by following abstract rules (i.e., syntactically) 
but also by determining the meaning of a rule in 
order to infer what strategy to use (i.e., semantically).   
■ McCarthy develops the LISP programming 
language, which becomes the dominant medium 
for AI for decades. The language focuses on data 
structures called “lists” and allows for the use of 
functions, including recursive functions.    

single layer of nodes between input and output, 
which prevents certain kinds of learning and logi-
cal functions.   
■ Noam Chomsky publishes his monograph 
Syntactic Structures, which develops the idea of 
transformational grammar, where grammar can be 
understood solely in terms of rules and symbols 
(i.e., syntax). Chomsky argues that these rules, espe-
cially recursion, explain humans’ ability to under-
stand and generate a theoretically infinite number of 
grammatically correct sentences. Chomsky com-
bines this idea with the older notion of context-free 
grammar—a method for identifying noun phrases, 
verbs, and other grammatical categories—giving 
rise to the computational approach to linguistics.   

1958
■ In December, at the Teddington Conference 
on the Mechanization of Thought Processes, held 
in the UK, multiple influential papers are presented 
by John McCarthy (fig. 11), Marvin Minsky, and 
Oliver Selfridge.   
■ Selfridge introduces Pandemonium architec-
ture, a neurally inspired thought experiment for 
visual pattern recognition, specifically of letters. The 
program involves multiple layers of neurons, called 
“demons,” moving from a layer of awareness of dif-
ferent features of an image, such as straight or 
curved lines, up to collections of features, such as 
shapes, eventually being able to distinguish between 
individual letters. The experiment inspires subse-
quent ideas for neurally inspired pattern recognition.   

11. John McCarthy, Stanford University, California, 1966
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between diff erent pieces of information. This allows 
the computer program to use both fi rst-order logic, 
concerning the logical relations between sentences 
(“if sentence A, then sentence B”), and second-order 
logic, concerning complex sentences that distinguish 
predicates and objects (“if the predicate X of object A, 
then the predicate Y of object B”). Together with Ber-
tram Raphael’s work on SIR, this program highlights 
the usefulness of logical representation as a way of 
storing and retrieving information.   
■ I. J. Good, in his “Speculations Concerning the 
First Ultraintelligent Machine,” suggests machines 
will eventually become smarter than humans. He 
argues that “the fi rst ultraintelligent machine is the 
last invention that man need ever make, provided 
that the machine is docile enough to tell us how to 
keep it under control.”   
■ The computer scientist Joseph Weizenbaum 
(fi g. 14) builds ELIZA, the fi rst chatbot. In its most 
famous incarnation, in which it imitates a psycho-
therapist, the program tracks keywords in a per-
son’s comment and reframes them into follow-up 
questions. ELIZA highlights how superfi cial conver-
sations can create the illusion of an understand-
ing—even caring—machine.   

vision and image processing Hubel and Wiesel’s 
idea that some neurons in the visual system act as 
edge detectors. It also leads to an expansion of 
interest in developing diff erent and more eff ec-
tive convolutions. 

1964
■ Daniel Bobrow, in his MIT dissertation, develops 
a program that solves natural-language algebra 
problems. This is possible because word problems 
often contain numbers, similar wording for mathe-
matical relations, and clearly irrelevant data.   
■ Bertram Raphael develops the Semantic Infor-
mation Retrieval (SIR) program, designed to answer 
questions about information provided by a user. 
The user inputs whether each piece of information 
is an object or a property as well as what relation-
ship this information has to other pieces of informa-
tion, with the result that each piece of information 
exists within a network of logical relations.    

1965
■ J. Alan Robinson develops the resolution method, 
an algorithm that utilizes conditional statements, 
such as “if A then B,” in representing the relationship 

By the end of the decade, robots will be installed in 
car factories around the world.   

1963
■ Edward Feigenbaum and Julian Feldman publish 
the fi rst anthology of writings on AI, Computers and 
Thought. The anthology brings together many 
of the key essays written during the fi rst decade of AI, 
marking its emergence as a broader scientifi c fi eld.  
■ Thomas Evans’s program ANALOGY, written as 
part of his PhD work at MIT, demonstrates that 
computers can solve multiple-choice analogy prob-
lems on IQ tests. The program determines the rele-
vant features of the shapes of two diff erent objects, 
discerns what makes them similar, then recognizes 
the relevant relationship in two other objects. 
■ The engineer Lawrence Roberts writes a pro-
gram for detecting objects in images. The program 
uses “convolutions,” a fi lter over a small subset of 
pixels in the image, to transform the original image 
into a two-dimensional line drawing (fi g. 13). The 
specifi c convolution used is the “Roberts cross,” a 
simple edge detector that transforms gradual 
changes in lighting into a sharp break—in this case, 
a straight line. This incorporates into computer 

13. Images from Lawrence Roberts’s 1963 MIT dissertation showing machine 
perception of three-dimensional solids

12. Unimation’s industrial robot model Unimate 2000B, ca. 1979. The fi rst 
iteration of Unimate was built in 1961.
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1968
■ Marvin Minsky and Seymour Papert publish 
Perceptrons, a scathing critique of neural networks 
that suggests they are fruitless techniques for AI 
(fig. 15). Importantly, the criticisms only apply to rela-
tively simple, single-layer neural networks, such as 
Frank Rosenblatt’s Perceptron. However, in the late 
1960s, it is unclear how to train multilayer neural 
networks. Fallout from the text’s publication 
includes limited interest in and decreased funding 
for neural network research. 
■ Stanley Kubrick’s film 2001: A Space Odyssey 
features the character HAL 9000, a sentient machine 
on a spaceship that begins to malfunction (fig. 16). 
When the astronauts attempt to disconnect HAL, the 
machine protects itself by becoming homicidal.   
■ Terry Winograd develops SHRDLU, a program 
that controls a simulated arm in a toy-block world 
(fig. 17). The arm can be instructed to move the toy 
blocks according to natural-language instructions. 
The program can also develop new vocabulary and 
receive new instructions provided they use terms 
derived from previously supplied instructions. 
Winograd’s work highlights the increasing interest 
in “microworlds,” discrete domains in which a 
specific problem can be solved while ignoring 
other issues.   
■ Chris Wallace and D. M. Boulton develop Snob, 
a program capable of classifying data points into 
“clusters”—effectively dividing up the search space 
into different groups of points, without any input 
from humans. This marks an early instance of unsu-
pervised learning.   

1969
■ Arthur Bryson and Yu-Chi Ho develop a learning 
algorithm for optimizing a neural network using the 

focused sums of knowledge demonstrate enor-
mous potential for problem-solving: DENDRAL 
identifies molecules based on mass spectra data; 
Macsyma solves problems in algebra; and 
MacHack plays tournament-level chess, becoming 
the first chess program to defeat a human in tour-
nament play. These systems are early versions of 
“expert systems,” machines with a large body of 
knowledge in some field hand coded into them.   

1966
■ At the University of Washington, M. Ross 
Quillian writes his dissertation treating semantic 
nets as a model for conceptual organization that 
can store and retrieve information effectively. Con-
cepts in semantic nets are defined by their location 
relative to other concepts: the concept “bird” is 
defined by both belonging to the concept “animal” 
and also containing the concepts “robin,” “fly,” and 
“wings.” Although these semantic nets permit logi-
cal inferences based on links between higher and 
lower genera, Quillian’s model does not require 
strict, exclusionary deductions; for example, pen-
guins still count as birds despite lacking the typical 
feature of flight.  
■ The Automatic Language Processing Advisory 
Committee (ALPAC), set up by the US government, 
produces a highly critical report on machine trans-
lation. The report draws attention to the gap 
between initial predictions of success in machine 
translation and the actual output, especially focus-
ing on difficulties concerning ambiguity in sen-
tences. This results in a drastic cut in funding for 
the field. The report praises work in computational 
linguistics and recommends more effort be 
put there.   

1967
■ In the wake of John McCarthy’s work on Advice 
Taker, a group of programs using large, narrowly 

14. Joseph Weizenbaum, Hamburg, Germany, 1980. 
In 1965, Weizenbaum built ELIZA, the first 
chatbot.

15. Cover of Marvin Minsky and Seymour Papert’s 
Perceptrons (1968)

16. Scene from Stanley Kubrick’s 2001: A Space Odyssey (1968), showing astronauts 
conversing as HAL, a sentient machine installed on their ship, looms in the background 
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chain rule—a notion later dubbed “back propaga-
tion of errors,” or “backprop” for short. The tech-
nique allows for a network receiving a wrong 
answer to automatically update its weights in the 
direction of the correct answer, resulting in a grad-
ual move toward the least erroneous answers—a 
process called “gradient descent.” The next year, 
Seppo Linnainmaa develops a neural network 
using what he calls “automatic differentiation,” a 
version of backprop. 
■ Stanford Research Institute introduces Shakey 
(named because of its wobbliness), the first mobile 
robot controlled by AI (fig. 18). The robot receives 
commands in (a very limited) natural language, 
breaks down commands into steps, uses cameras 
to identify objects, and relies on locomotion to 
avoid or interact with objects in the lab. Shakey 
receives extensive media coverage and becomes 
the model robot for decades.   
■ Roger Schank presents his conceptual depen-
dency theory for natural-language input. Schank’s 
model stores information according to a set of real-
world categories, such as objects, events, places, 
and times. Each category also permits subcatego-
ries that can specify attributes. Since the categories 
refer to real-world entities and events, the system 
can determine when two sentences may be differ-
ent but refer to the same thing—or even are identi-
cal in meaning.   
■ John McCarthy and Patrick Hayes publish 
“Some Philosophical Problems from the Standpoint 
of Artificial Intelligence.” Drawing out implications 
from McCarthy’s earlier discussion of common 
sense, the authors highlight a challenge in deter-
mining what counts as “relevant information” for an 
AI system. For example, if a machine wishes to 
stack a group of irregularly shaped objects (such as 
dishes), it must have an intuitive grasp of not just 
physics but also the objects’ different weights, cen-
ters of gravity, and relative sturdiness. McCarthy 
and Hayes suggest that even such “simple” actions 
require that an enormous amount of information be 
computed in a relatively short amount of time—a 
problem known as “combinatorial explosion.” This 
problem of calculating relevant information comes 
to be known as the “frame problem”—the challenge 
of determining the proper “frame” of relevant and 
nonrelevant information—which is regarded as a 
near-fatal obstacle for AI at the time.    

1971
■ Herbert W. Franke publishes Computergraphik-
Computerkunst, the first book of computer 
graphic art.
■ In her paper “Natural Categories,” Eleanor 
Rosch sets out a novel understanding of concepts. 
Rather than treating human concepts as strict logi-
cal definitions, such as “a triangle is an enclosed, 

18. Computer scientist Charles Rosen with Shakey (1969), the first mobile robot controlled by AI, 
Stanford Research Institute, California, ca. 1970

17. Image of Terry Winograd’s 1968 program SHRDLU

PICK UP A BIG RED BLOCK. 

OK.
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1973
■ The Lighthill Report for the British Science 
Research Council to the UK Parliament highlights 
the enormous gulf between the claims made by AI 
advocates and their modest accomplishments. The 
report, noting problems of combinatorial explosion, 
suggests AI is far less successful than alleged and 
recommends massive funding cuts for the field. 
This roughly marks the beginning of the first “AI 
winter,” a period of funding cuts and lost interest in 
the field.   
■ In version 4.0 of Northwestern University’s 
chess-playing program Chess, the program’s prior 
heuristics (type-B) approach is replaced with a 
brute force (type-A) approach. Chess and its suc-
cessors become the dominant chess-playing pro-
grams of the decade. This implies two things: First, 
since prior heuristic programs had proven to be 
weak chess players, it is unlikely that humans rely 
on formalizable heuristics alone. However, humans 
also cannot use brute force in chess playing. This 
implies, second, that optimal problem-solving with 
computing technology is unlike human problem-
solving.   
■ The artist Harold Cohen develops AARON, a 
program designed to help him create art (fig. 19). 
Cohen hand codes the program’s knowledge of 
artistic concepts, such as shape and color.   

1974 
■ Ted Shortliffe develops MYCIN, a program 
designed to diagnose illnesses based on a large 
database that correlates information from test 
results with symptoms. The program also calculates 
a confidence level for its diagnoses. The results are 
roughly comparable to those provided by a human 
doctor. MYCIN is never deployed but does suggest 
a practical role for expert systems combining large 
bodies of rules and data for medical use.   

1975
■ Meta-DENDRAL, a machine-learning program 
working with a version of DENDRAL, derives new 
rules for mass spectrometry. These rules are pub-
lished in a peer-reviewed journal, marking the first 
scientific discovery by a machine—although 
Meta-DENDRAL is not included as an author.   
■ Marvin Minsky’s article “Frames” makes 
explicit the increasing trend in AI for approaching 
intelligence through “microworlds,” such as Terry 
Winograd’s SHRDLU, where a specific problem can 
be solved by applying a “frame” that specifies rele-
vant information, such as the expected objects the 
program will encounter, the concepts needed, the 
general rules that apply, and what information 
is significant.    
■ Ross Quinlan introduces the Iterative Dichoto-
mizer (ID3) program, which sorts through data 

tory of AI projects and an extended philosophical 
critique of their claims to simulate human thought. 
The book makes two main criticisms: First, pro-
grams like GPS or SIR only followed syntactic rules 
and did not “understand” what they were doing 
semantically. Second, even if AI could solve prob-
lems semantically, they would not be behaving 
like humans because humans are not principally 
thinkers. Rather, Dreyfus argues, humans are 
embodied social agents in an ever-changing world 
who only rarely engage in the problem-solving 
behavior typical of AI.    

three-sided figure,” she recommends treating con-
cepts as bundles of attributes, such as the concept 
“mammal” having the attributes “fur,” “four limbs,” 
and so on. She calls these concepts “prototypes” 
and argues that their fuzzy boundaries are a fea-
ture, not a bug, that allows language users to deal 
with ambiguity. This work pushes AI toward fuzzy 
boundaries and uncertainty.   

1972
■ Hubert Dreyfus publishes What Computers 
Can’t Do: The Limits of Artificial Intelligence, a his-

19. Harold Cohen using the “Turtle” drawing tool, controlled by his 1973 art-making program, 
AARON, San Diego, 1977
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1978
■ Herbert Simon wins the Nobel Prize in Econom-
ics for his work on “bounded rationality,” or “satisfic-
ing.” The idea is that human decision-makers do not 
make optimal decisions—which would require per-
fect knowledge and unlimited time—but satisfac-
tory decisions—based on limited information, cog-
nitive heuristics, and constraints.  

1979
■ Kunihiko Fukushima develops the neocogni-
tron, a multilayer neural network based on the visual 
cortex. The network recognizes handwritten char-
acters by having different layers differentiate 
between local features, such as edges, and global 
features, such as shape.  
■ For his dissertation, Hans Moravec turns the 
Stanford Cart into the first fully autonomous vehicle. 
The cart was originally built in the 1960s by the Stan-
ford University graduate student James L. Adams 
to be a remote-controlled moon rover. Moravec 
provides the machine with three-dimensional visual 
awareness so it can slowly navigate a parking lot 
with obstacles (fig. 21).   
■ Multiple researchers, including John McCarthy 
and Drew McDermott, begin work on nonmono-
tonic logics in AI. Whereas standard logic assumes 
statements are always true or false, nonmonotonic 
logics focus on tentatively held statements based 
on incomplete information that are subject to 
further evaluation as evidence comes in. This 

requires developing models of truth maintenance—
adjusting beliefs in light of changing events and 
evaluating when to retain or reject a previously 
held belief.   

1980 
■ The first annual conference by the Association 
for the Advancement of Artificial Intelligence is held 
at Stanford University, California.  

1981 
■ Japan funds the Fifth Generation Computer 
Project, an ambitious attempt to develop AI for per-
ception, speech recognition, language processing, 

sets and “dichotomizes” (splits in two) the data into 
categorizing clusters, with each cluster more 
homogenous than the original set. The program 
then reiterates the process multiple times, result-
ing in increasingly specific clusters. This “data min-
ing” creates decision trees, which allow for faster 
categorization of new information as well as pre-
dictions about novel but related phenomenon 
(fig. 20). Decision trees become essential for the 
data mining at the heart of twenty-first-century 
deep learning.   

1976
■ During their lecture upon receiving the Turing 
Award, Allen Newell and Herbert Simon propose 
“the physical symbol system hypothesis,” the idea 
that symbol manipulation is the essence of thought. 
They write, “A physical symbol system has the nec-
essary and sufficient means for general intelligent 
action.” This becomes the basis for the computa-
tional theory of mind, a dominant paradigm for both 
AI and cognitive science.   

1977
■ METEO, a system that translates weather 
forecasts from English into French for the prov-
ince of Québec, is installed. The dual-language 
culture of Canada provides an excellent resource 
for machine translation, with the English–French 
transcripts of Parliamentary proceedings form-
ing the input for many contemporary translation 
data sets.  
■ In Scripts, Plans, Goals, and Understanding: An 
Inquiry into Human Knowledge Structures, Roger 
Schank and Robert Abelson hypothesize that 
human thinking involves “scripts” for certain inter-
actions. For example, when ordering at a restaurant, 
people go through effectively scripted conversa-
tions to order their food. Schank and Abelson sug-
gest that concepts in AI should be connected 
according to their use in scripts, rather than in a 
logical domain. So while the concepts “waiter,” 
“menu,” and “fork” are not related in the dictionary, 
they are all included in the script for successfully 
ordering and eating at a restaurant. 
■ Roger Shepard performs experiments on 
human subjects exploring “mental rotation,” the 
ability to imagine what a pictured object would look 
like from another direction. He concludes that 
humans mentally simulate rotating the object in 
their mind in order to solve the problem. This sets 
off a debate in cognitive science over whether 
“imagistic” representations exist in humans and,
 if they do, whether they require separate treatment 
from the discrete representations at the heart 
of logic and language. It also spurs a similar discus-
sion in AI about the value and treatment of imagistic 
representations. 21. The Stanford Cart, Stanford University, California, 1970s

20. Example of a decision tree categorizing 
weather conditions for a game of tennis

Outlook

Sunny

Humidity

High Normal Strong Weak

YES

NO YES

Wind

Overcast Rain

NO YES
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22. Spread from The Policeman’s Beard Is Half Constructed, 1984; illustration by Joan Hall

1987
■ The roboticist Rodney Brooks proposes that the 
traditional paradigm of AI is misguided because of 
its narrow focus on abstract problem-solving. He 
argues that most cognitive abilities are “situated,” 
consisting of embodied perceptual-motor capacities 
tailored to interact successfully with an environment. 
Brooks introduces a “subsumption architecture,” in 
which different processes are handled by different 
single-purpose systems stacked into a hierarchy. In 
his behavior-based robots, such as ALLEN and HER-
BERT, this architecture comprises multiple systems 
broken down by task—for example, movement or 
vision—allowing the robot to navigate its environ-
ment. Brooks holds that, similar to biological beings, 
these robots move through the world by using not 
abstract thinking but embodied awareness. 
■ The first Conference on Neural Information 
Processing Systems (NeurIPS) is held. The annual 
conference becomes the leading forum for work on 
neural networks, which become progressively more 
common—and more dominant—throughout the 
twenty-first century.   

1984
■ The first AI-written book, The Policeman’s 
Beard Is Half Constructed, is generated by the ran-
dom prose–generating program Racter (fig. 22). 
On the back cover, Racter teases, “Stories, essays, 
dissertations, tales are in this book. There are also 
meat and tomatoes, contracts and agreements. 
This book is my consciousness, my awareness, my 
world-view.”   

1985
■ David Rumelhart, Geoffrey Hinton, and Ronald J. 
Williams independently rediscover backpropaga-
tion. They each propose multilayer neural networks 
(now relabeled “parallel distributed processing” or 
“connectionist” systems) that can engage in 
machine learning using backpropagation. These 
results are published in a two-volume set titled Par-
allel Distributed Processing: Explorations in the 
Microstructure of Cognition, a text that sets off a 
wave of interest in neural networks among philoso-
phers and neuroscientists, as well as skepticism 
among defenders of “good, old-fashioned artificial 
intelligence” (GOFAI).  

and cognition. This marks the beginning of a new 
“AI spring,” with similar efforts—and funding—taking 
place in the US and the UK.  

1982
■ John Hopfield introduces the Hopfield network, 
a system loosely designed to mimic human associa-
tive memory. Each neuron in the network acts as 
both input and output, and all neurons are connected 
with each other in a single layer. The network is able 
to store patterns in memory, where the memory is 
encoded as the specific weights for that pattern, and 
retrieve them by returning to those specific weights.  

1983
■ John Laird and Paul Rosenbloom, under 
Allen Newell at MIT, finish dissertations on Soar, a 
cognitive architecture loosely based on Newell’s 
earlier work on the GPS. The goal of Soar is to 
create artificial agents with general intelligence—
unified systems with multiple interacting cognitive 
capacities that make them capable of solving 
any cognitive task. This architecture is still in 
use today.  
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23. Diagram of a convolution, a fi lter applied to a small part of an image, in a convo lutional 
neural network

sets in. Both biologically inspired and cognitivist 
fi elds see massive decreases in funding and atten-
tion, and the term artifi cial intelligence falls out of 
fashion. The result is that the subsequent rise of the 
internet and the invention of search algorithms occur 
without explicit discussions of intelligent machines.

1993
■ In Rules of the Mind, John R. Anderson provides 
an updated cognitive architecture, ACT-R, a 
descendant of work by Allen Newell as well as of 
Anderson’s own cognitive science work. This archi-
tecture divides cognition into procedural knowl-
edge, which provides the rules for how information 
should be used, and declarative knowledge, which 
furnishes facts for acting upon. The system also 
includes perceptuomotor modules utilizing “rational 
analysis,” which Anderson interprets as the adapta-
tion of the machine to statistical regularities in the 
environment. This becomes a dominant cognitive 
architecture; various projects are still implemented 
using this framework.  
■ Rodney Brooks begins the Cog project at MIT 
(fi g. 24). The project’s aim is to create an embodied 
humanoid agent with humanlike sensory-motor 
capacities and facial expressions as well as some 
emotional awareness. The project is widely covered 
in the media, although its successes are limited.  

1994
■ A demonstration of autonomous cars driving 
on the highway, using technology developed by 
Ernst Dickmanns and the Daimler-Benz Corpora-
tion, is presented to the public (fi g. 25). The cars are 
able to operate at speeds of up to 80 mph, navigate 
heavy traffi  c, and change lanes without human 
input. Dickmanns’s high-speed, low-information 
computer vision allows computers to be responsive 
to real-time events without internal models. This is 
accomplished by having the computers only pro-
cess a tiny amount of the information—in this case, 
the immediate area in front of the car, lane markers, 
and road signs—while ignoring everything else. 
Although this is eff ective for highway driving, 
Daimler-Benz declines to provide further funding 
toward the research needed for in-city driving, thus 
ending the project.  

1995
■ Drawing on Vladimir Vapnik’s previous work, 
Corinna Cortes and Vapnik publish work on support-
vector machines. These are kinds of algorithms 
that prove essential for supervised learning, which 
consists of training based on human-labeled data 
in order to generate humanlike responses from 
the machine.
■ Tin Kam Ho develops random decision forests, 
a method for data classifi cation that avoids “overfi t-

1988
■ Judea Pearl’s Probabilistic Reasoning in Intelli-
gent Systems introduces the idea of Bayesian net-
works. Bayes’s theorem provides an eff ective math-
ematical method for evaluating the probability of a 
hypothesis in light of given information as well as 
how a system can update beliefs as more evidence 
comes in. Pearl’s Bayesian networks use graphical 
representations to indicate the relative dependen-
cies of probabilities, where certain pieces of evi-
dence make more hypotheses more likely while rul-
ing out other hypotheses altogether. This work on 
conditional probabilities also makes clear the need 
for—and challenges in—getting machines to distin-
guish between causality and correlation.  

1989
■ Using backpropagation, Yann LeCun trains a 
multilayer convolutional neural network to recognize 
handwritten zip codes. This neural network creates 
feature detectors akin to those in biological vision 
systems—such as David H. Hubel and Torsten Wie-
sel’s edge-detecting neurons. This is accomplished 
by applying multiple localized feature detectors (i.e., 
convolutions) to the entire image (fi g. 23). These con-
volutions then detect and accentuate features like 
edges, corners, or curves, passing the results to fol-
lowing layers. Those layers pass the most distinctive 
features along and weed out the least distinctive, 
permitting the next layers to focus on conjunctions 

of features—for example, the combination of edges, 
corners, and curves making up the letter R. The 
result is one of the fi rst instances of deep learning: 
machine learning involving numerous “hidden” lay-
ers between the inputs and outputs.  
■ Christopher Watkins develops Q-learning, a 
method of “model-free” reinforcement learning by 
which the agent (i.e., learning system) develops an 
optimal policy for how it should act at each state. 
The process involves attributing values to various 
actions, with the agent always choosing the highest 
values. The agent also reweights its prior state once 
it knows the value of its choice, with the result that 
successful moves are made more likely in future 
iterations. Through successive trial-and-error 
attempts, the program—given infi nite chances and 
a fi nite problem—will eventually always act in a way 
that achieves the highest values, which forms the 
optimal policy. Q-learning becomes infl uential in 
deep-learning systems, especially in those 
domains, such as video games, where actions 
already have values (e.g., scores).  

1990
■ TD-Gammon, a neural-net backgammon player, 
competes with world-class players, highlighting the 
increasing abilities of multilayer neural networks 
using reinforcement learning to solve problems.   
■ After another round of bold predictions meets 
with limited success, the second AI winter gradually 
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25. Prototype of the autonomous car developed by Ernst Dickmanns and the 
Daimler-Benz Corporation, first demonstrated in 1994

ting,” the data-mining problem where a model’s 
attempt to perfectly match current data—including 
outliers and errors—leads it to make poor predic-
tions about future data. Random forests avoid this 
by creating decision trees that categorize using only 
subsamples of the data. By creating many different 
decision trees, which repeatedly separate data into 
increasingly specific clusters based on their own 
subsample, the program ends up with many differ-
ent attempts to solve the same problem—useful for 
comparison. This forest of different decision trees 
minimizes the impact of idiosyncratic categoriza-
tions that might lead to overfitting on their own.  

1997
■ IBM’s chess-playing computer Deep Blue 
defeats Garry Kasparov, the reigning world chess 
champion (fig. 26). 

24. Rodney Brooks with Cog, 1996. Brooks began his project to create an 
embodied humanoid agent at MIT in 1993.

■ The search engine AltaVista releases Babel 
Fish, an online translation service. The translations 
are primitive, but the program marks a renewed 
interest in machine translation during what is now 
the internet era.  
■ Sepp Hochreiter and Jürgen Schmidhuber 
develop long short-term memory (LSTM), a type of 
neural network with a short-term memory in the 
form of recurrent loops. Unlike other neural net-
works, where all connections go in one direction 
(called “feed-forward networks”), LSTM has con-
nections that loop back on themselves or to prior 
stages in the network. This repeats pieces of infor-
mation back into the system, reminding it of some 
previous result. LSTM avoids retention issues faced 
by previous recurrent neural networks by storing 
pieces of information that other pieces of informa-
tion will depend on—for example, earlier states in a 
video or the verb tense in a sentence. This allows 

LSTM to process later data in light of earlier data—
even if that data is from much earlier—marking a 
substantive increase in efficacy for neural networks 
in processing temporal information. 

1998
■ Yann LeCun develops LeNet-5, a seven-layer 
convolutional neural network that recognizes the 
handwritten numbers on checks. The system, even-
tually adopted by several banks, can recognize the 
digits on 10 percent of the checks written in the 
United States—a major early commercial success of 
neural nets. Around the same time, LeCun and his 
team release the Modified National Institute of Stan-
dards and Technology (MNIST) database, a large 
collection of examples of handwritten characters, 
which becomes the standard test data for building 
and evaluating character-recognition software.
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1999
■ Sony releases the robotic dog AIBO, a toy 
capable of basic perception and navigation of its 
environment (fig. 27).   

2000
■ Cynthia Breazeal publishes a dissertation at 
MIT on Kismet, a computing robot that can recog-
nize and simulate human emotional states (fig. 28). 
Kismet possesses a face, visual and auditory 
modalities, and the capacity to track eye gaze, 
detect movement, and perceive skin color. 

2002
■ Rodney Brooks’s company iRobot releases 
Roomba, a robotic vacuum cleaner.
■ Lynn Hershman Leeson publishes the artificially 
intelligent artwork Agent Ruby (fig. 29). The online 
program, based on Hershman Leeson’s film 
Teknolust (2002), offers text conversations with 
an AI web agent named Ruby, represented by 
a disembodied face that displays emotional reac-
tions to the conversation.  

2004 
■ The first DARPA Grand Challenge is held. For 
the contest, funded by the Defense Advanced 
Research Projects Agency, autonomous cars com-
pete at navigating rugged terrain on a 132-mile 
route across the Mojave Desert from California to 
Nevada. Although no cars complete the route in 
the first event, four out of twenty-three succeed in 
the second year. Stanley, the entry from the Stan-
ford Racing Team, takes first place by navigating 
the course at an average speed of 19.1 mph.  

2006
■ Geoffrey Hinton and Ruslan Salakhutdinov pub-
lish a seminal article on deep learning. While earlier 
work on backpropagation and convolutional nets 
revealed the potential for deep networks, it also 
pointed to shortcomings: limited computing power 
and the “vanishing gradient” problem. The former 
problem was gradually overcome by technological 
innovation in microprocessors, but better comput-
ing power only highlighted the second issue: the 
deeper the network (i.e., the more hidden layers 
between inputs and outputs), the more likely that 
patterns detected in early networks would be lost in 
later networks (i.e., the “gradients” would “vanish”). 
Hinton and Salakhutdinov argue that the vanishing 
gradient problem can be solved by pretraining—
early layers can be trained on the data first, and 
later layers then stacked on top afterward. This 
innovation makes deep learning far more effective, 
efficient, and available for wider usage—both theo-
retical and commercial. 

27. AIBO the robotic dog, 1999

26. World chess champion Garry Kasparov playing against IBM’s Deep Blue, New York, 1997
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28. Cynthia Breazeal with her computing robot Kismet, a project started in 1998

29. Screenshot of Lynn Hershman Leeson’s Agent Ruby (2002)

2009
■ Fei-Fei Li and her colleagues at Princeton Uni-
versity release ImageNet data set, a massive data-
base of labeled images. The next year, the first 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC), an annual competition for AI object-
recognition programs trained on ImageNet, is held.  

2011
■ IBM’s Watson, using a mix of deep learning and 
language processing, defeats two former Jeopardy!
champions. Watson is later applied to problems in 
health care, education, and other data-intensive 
tasks. IBM does not release the underlying code for 
Watson; as a result, its impact is limited.   
■ Apple releases Siri, a voice-activated digital 
assistant, as part of the iPhone 4S. Siri answers nat-
ural-language questions and provides weather 
forecasts, map directions, and jokes. Although the 
system is limited upon release, it continues to be 
improved to this day. Within the next few years, 
Amazon, Google, and Microsoft all roll out similar 
digital assistants for their own platforms.   

2012
■ Jeff Dean and Andrew Ng at Google Brain 
develop a deep neural net trained on random, unla-
beled images from YouTube. Surprisingly, the pro-
gram learns to recognize cat faces. The implication 
is that, with enough data, pretraining is no longer 
necessary. This means the vanishing gradient prob-
lem is largely a problem for smaller data sets, and 
so the new focus is on gathering up as much data 
as possible, referred to as “big data.”  
■ Alex Krizhevsky’s AlexNet, a deep convolutional 
neural network (DCNN) run on a graphics process-
ing unit (GPU), achieves an error rate of 16 percent 
in the ILSVRC. This is a marked improvement over 
prior years and the other competitors. Following 
this victory, DCNN and successors dominate 
ImageNet and become the new model for com-
puter vision, spurring research and funding for 
GPU-implemented neural networks. 

2014 
■ Facebook publishes work on DeepFace, their 
deep-learning facial-recognition software. The 
program performs at an accuracy rate of 97.35 per-
cent—effectively as accurate as humans and far 
more advanced than competing networks. The 
impressive success of the network brings with it 
questions about the ethics of facial recognition, 
especially in the hands of governments.  
■ Ian Goodfellow demonstrates a generative 
adversarial network (GAN). GANs combine tradi-
tional machine learning, which categorizes exam-
ples, and generative networks, which produce 
new examples. For example, in the case of faces, a 
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the hierarchical nature of the human visual system. 
The work highlights a convergence between the 
architectures used in natural and artificial visual 
processing, although there are still important 
disanalogies between the two systems, such as the 
lack of backpropagation in the brain.
■ Google Translate switches from traditional 
machine-learning methods—involving word look-
up and grammatical rules for proper transforma-
tions—to deep-learning methods. This results in 
an impressive jump in performance, leading to 
an outpouring of interest in the technology. Com-
peting platforms are pushed to move to deep 
learning and neural nets.  
■ The computer program AlphaGo beats Go 
grandmaster Lee Sedol (fig. 30). AlphaGo, devel-
oped by Google DeepMind, mixes machine learn-
ing based on millions of example games with a 
Monte Carlo tree search strategy. The Monte Carlo 
tree search involves testing different strategies at 
random for any given move, expanding the search 
space. Based on the findings, the program can then 
selectively explore strategies in the area most likely 
to provide successful moves. This results in a pro-
gram that employs both deep learning and heuristic 

traditional network focuses on learning to recog-
nize faces, whereas a generative network learns to 
create new faces to be recognized. In GANs, both 
networks simultaneously improve, resulting in a 
highly tuned facial-recognition network and a very 
accurate face generator. These generative net-
works permit the creation of deepfakes, fraudulent 
but highly realistic faces. 

2015
■ A group of influential intellectuals—including 
the physicist Stephen Hawking, the inventor Elon 
Musk, and the AI engineer Stuart Russell—sign 
“Research Priorities for Robust and Beneficial Artifi-
cial Intelligence: An Open Letter.” The letter calls for 
the development of beneficial AI that is capable of 
being controlled by humans. The authors draw spe-
cial attention to the dangers of autonomous vehi-
cles—especially armed military drones—and end by 
expressing broader dystopian concerns about 
superintelligent machines.   

2016 
■ Daniel Yamins and James DiCarlo develop 
a deep convolutional neural network that mimics 

30. Go grandmaster Lee Sedol reviews the match after losing to Google DeepMind’s program AlphaGo, 
Seoul, 2016

strategies in order to avoid the impossible task of 
simulating every possible game. Although AlphaGo 
reveals the enormous potential of contemporary AI, 
the network is trained on games played by humans. 
A successor network, AlphaGo Zero, is able to deci-
sively best AlphaGo by solely training on games it 
plays with itself, with zero human input. The upshot 
is that, at least in some cases, machines learn best 
when they ignore human reasoning altogether.  
■ Two milestones are reached in health care intel-
ligence: First, the robot Xiaoyi, developed by the 
Chinese technology company iFlytek and Tsinghua 
University, Beijing, uses deep learning to pass 
China’s national licensing medical exam. Xiaoyi’s 
success indicates the ability for machines to pro-
cess and utilize the natural language needed for 
analyzing textbooks and clinical information. 
Shortly afterward, CheXNet, developed by Stanford 
University, bests humans at detecting pneumonia 
based on X-rays.
■ In Pittsburgh, Uber deploys self-driving cars, 
with a human able to take the wheel in emergen-
cies. The program is expanded into San Francisco, 
Toronto, and Tempe, Arizona. 

2018
■ The first fatality from a fully autonomous car 
occurs in Tempe, Arizona, when a woman in a 
crosswalk is hit by a self-driving Uber. Uber pulls all 
of its self-driving cars off the road in response.
■ Google unveils Duplex, a virtual assistant that 
can call businesses and schedule appointments on 
behalf of users. The speech abilities of Duplex, while 
limited to specific tasks, are so sufficiently human-
like that receptionists do not always recognize that 
a machine is speaking.
■ DeepMind’s AlphaStar defeats professional 
players of the video game StarCraft II. The game 
presents several challenges: the pieces are all iden-
tical, and competitors are often hidden from each 
other’s sight. The corporation OpenAI also enters 
five neural networks, known as the “OpenAI Five,” in 
a professional Dota 2 competition. In Dota 2, multi-
ple agents control avatars with different skill sets 
and work together as a team. These successes  
demonstrate the ability of AI to compete in games 
that demand cooperation and real-time strategies 
in the face of limited information.
■ The first piece of AI-generated art, Portrait of 
Edmond de Belamy, created by the Paris-based 
artist collective Obvious, sells at auction for 
$432,500.

2019
■ OpenAI unveils the program GPT-2, which gen-
erates predictive text for an input sentence based 
on the kinds of sentences that statistically follow. 
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AI Glossary
Compiled by Jake Browning and Philipp Schmitt

Agent A machine that can sense and respond to its envi-
ronment and that can use autonomous reasoning 
in order to achieve some goal. Examples include 
virtual assistants, such as Siri and Alexa. Agents can 
perform alone, with other agents or humans, or 
even against others, depending on the task.

AI Effect The phenomenon where solving a task is consid-
ered a proper test of “artificial intelligence” before it 
is accomplished, but the solution is treated as “just 
a computer program” immediately afterward. This 
perspectival shift often results in the undervaluing 
of successes in AI.

Algorithm A set of instructions for solving a problem. Although 
historically algorithms are associated with the steps 
involved in solving arithmetic problems, the con-
cept is more general and includes any procedure—
such as a recipe or map directions—that results in a 
solution. In machine learning, the “solution” to a 
learning problem is an algorithm, and the machine 
is responsible for discovering the algorithm through 
trial and error.

Artificial General 
Intelligence (AGI)

The development of an artificial agent that can 
perform intelligent tasks in a multitude of different 
domains. The ideal is a machine with cognitive 
capacities similar to—or even exceeding—those 
of humans.

Artificial 
Intelligence (AI)

Any nonbiological process that, if done by a biologi-
cal being, would count as “thinking.” The most com-
mon version of this is machine intelligence, in which 
a machine is used to solve a cognitive problem, 
such as playing a game, diagnosing an illness, or 
analyzing stock trends.

Artificial Neural 
Net (ANN)
(or Neural Network) 

A machine designed to mimic the learning that 
takes place in the brain. The machine uses parallel 
processing and interconnectedness of small pro-
cessors, called nodes, that function similarly to net-
works of biological neurons. The nodes learn 
through trial and error by having their weights 
adjusted in response to wrong answers. 

Autonomy In the case of machines, this refers to the ability to 
act without input from a human.

Backpropagation
(or Backward 
Propagation of Errors)

A method for training multilayer (i.e., “deep”) neural 
networks that involves correcting each layer in the 
network in reverse sequence, working backwards 
from the output to the original input.

Bayesian Networks
(or Belief Networks, or 
Causal Probabilistic 
Networks)

Networks that allow for reasoning about uncertain 
situations and are capable of evaluating probabili-
ties and updating beliefs in light of new information.

Boltzmann Machine A type of Hopfield network that randomizes whether 
nodes are on or off.

Brute Force
(or Type-A Problem- 
Solving)

A type of problem-solving that involves searching 
through as many solutions in the solution space as 
is feasible and selecting the optimal solution from 
those available.

Chatbots Interactive programs designed to engage in human 
conversation.

Classification Providing a label for some input or piece of data. 
In the case of supervised learning, this involves 
a machine learning an algorithm that assigns 
human-specified labels to each input.

Cluster Analysis
(or Clustering)

A type of unsupervised learning that groups similar 
data points into their own category.

Combinatorial 
Explosion

The phenomenon where small changes increase 
the complexity of a problem to the point at which it 
is no longer solvable within any realistic time frame. 
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Common- Sense 
Reasoning

The vaguely defined set of capacities and back-
ground knowledge evidenced by humans in their 
everyday interaction with the world. Being able 
to reproduce common-sense reasoning is often 
treated as the “Holy Grail” of AI, since it implies 
a “general” intelligence capable of reasoning, plan-
ning, conversing, and interacting with the environ-
ment much as humans do.

Computer Vision
(or Machine Vision)

The field of designing machines that analyze 
visual information. The boundaries of this field 
can be both narrow, as when referring to image 
classification, or broad, as when it is used in 
autonomous vehicles.

Cybernetics The field of research covering the adaptive use of 
information by a mechanical or organic being. 

Data Mining The process of uncovering relationships between 
different pieces of information. In the case of 
machine learning, this often involves teasing out 
unexpected connections by analyzing a massive 
amount of data, or “big data.”

Data Point A single input or piece of information, generally 
understood as a small part of a much larger data set.

Decision Tree Similar to flowcharts, design trees represent how to 
classify a data point by analyzing its relationship to 
other data points.

Deep Learning Machine learning performed by neural networks 
with many layers of nodes.

Expert System
(or Knowledge- Based 
System)

A machine designed to solve a problem based on 
knowledge collected from the experts in some field. 
This is especially common in medical diagnostic 
software and troubleshooting programs.

First- and Second-
Order Logic

Systems of logic used to deal with quantification 
(i.e., all, some, or none). First-order logic concerns 
only the relationship between entities. Second-
order logic can also handle relationships 
between sets.

Frame Problem The difficulty of specifying all of the relevant and 
nonrelevant axioms an agent needs to know in 
order to navigate its environment. This problem 
is often used to explain the need for common-
sense reasoning.

Genetic Algorithm Modeled on biological evolution, genetic algorithms 
create numerous random solutions to a problem, 
cull poorly performing solutions from each iteration, 
and introduce variations in (or mixing between) the 
best solutions from each group. Through multiple 
iterations, the remaining algorithms will often pro-
vide exceptional but unexpected solutions.

Gradient Descent A standard technique for guiding trial and error in 
machine learning where the network seeks out 
through a series of small steps (i.e., “descends to”) 
the least erroneous algorithm (also referred to as 
“the minimum”).

Hebbian Learning A theory proposed by the psychologist Donald 
Hebb that explains how neurons learn. The idea, 
often summed up as “neurons that fire together, 
wire together,” suggests that the repeated coinci-
dental firing of two or more neurons will lead to 
them being associated in the brain, thus firing 
together even more in the future.

Heuristic Search 
Techniques
(or Type- B Problem- 
Solving)

A search technique involving hand- coded rules 
of thumb for solving a problem—often deployed in 
cases that cannot be solved by brute force alone, 
such as in games of chess. Although these tech-
niques often lead to acceptable solutions, they 
are not always the best solutions—which is why 
many chess-playing computers still lose matches 
to humans.

Hopfield Network A neural network where all nodes are binary (i.e., on 
or off) and act as input and output to all other nodes. 
This design mimics associative memory in the 
human brain, where nodes that fire together feed 
into one another, deepening their interconnection. 

Hybrid Systems Intelligent agents that use both lower- level machine 
learning and higher- level symbolic AI to achieve 
rapid learning while also maintaining humanlike 
logical reasoning.

Instrumental 
Reasoning
(or Back Chaining)

The “means–ends” reasoning process where the 
final goal (the “ends”) is established first, prior to the 
intermediary steps (the “means”).

Learning Progressive improvement over time on some task.

Machine Learning The practice of letting machines develop their 
own algorithms through trial and error in lieu of 
humans hand coding the algorithms. This term is 
also used to refer to approaches favoring artificial 
neural networks.

Markov Chain A random sequence where each decision in the 
chain is based solely on the last decision made.

Microworld
(or Toy World)

A small domain for an artificial agent to operate in, 
such as a virtual or video game world.

Minimum (Global 
and Local)

The global minimum describes the algorithm that 
has the least error between what it predicts and the 
actual data points, graphically represented as the 
lowest point in the lowest valley in a solution space. 
Local minimums refer to nonoptimal algorithms 
that a machine might mistakenly treat as the best, 
represented as the lowest point in a shallow valley.
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Natural-Language 
Processing

Programs designed to interpret everyday language, 
as opposed to technical or formal languages that 
are used in artificial situations.

Pattern Recognition The ability of a machine to discern the pertinent 
features of data, especially for the purposes of 
classification.

Planning The general field for machines that generate strate-
gies for acting, deploying resources, and adjusting 
to solve problems.

Predictive 
Algorithm

An algorithm that predicts an expected outcome 
based on some input—for example, forecasting 
that a potential debtor will default based on their 
credit history.

Pruning A practical technique whereby a machine ignores 
(i.e., “prunes”) strategies on a decision tree that will 
not lead to an acceptable solution, also referred to 
as “fruitless strategies.”

Recursion The use of a function within use of the same func-
tion. For example, in the mathematical operation 
x(y*z), the same function is applied both within the 
parentheses and also to the parentheses as a 
whole. 

Reinforcement 
Learning

Akin to reinforcement learning in biological beings, 
this involves training a machine to achieve a gen-
eral goal, such as winning a game, by providing 
general evaluative metrics for proper and improper 
responses, such as winning and losing.

Semantic Net A graph depicting the relationships between con-
cepts in some domain.

The Singularity The moment when machine intelligence might sur-
pass human intelligence.

Solution Space All of the possible algorithms, both effective and 
ineffective, for solving a particular problem. 
Because most machine-learning problems involve 
more than three dimensions, it is difficult for 
humans to imagine this space; it is therefore often 
represented as a geometric plane crisscrossed 
with peaks and valleys.

Strong AI The development of a sentient and sapient artificial 
intelligence. It is contentious whether this will ever 
be possible for computers.

Supervised 
Learning

Machine learning accomplished through trial and 
error whereby the machine attempts to conform to 
correct answers provided by a “teacher.” The 
teacher often consists of a well-labeled data set, 
such as labeled images of faces, and the network 
trains itself to correctly predict the proper label for 
each face.

Symbolic AI
(or Classic AI, or 
Good, Old- Fashioned 
AI [GOFAI])

Term used to refer to artificial machines that mimic 
high-level human reasoning, such as that deployed 
in mathematical proofs, deductive inference, con-
ceptual analysis, and analogical reasoning. 
Although eclipsed by machine learning in recent 
years, symbolic AI was the dominant paradigm until 
the 1980s, and it still has many advocates.

Turing Test A test for intelligence suggested by the mathemati-
cian and computer scientist Alan Turing that uses 
conversation to determine whether someone is 
talking to a sentient machine or a human being.

Unsupervised 
Learning

Machines that learn using unlabeled data, usually 
through cluster analysis (i.e., treating nearby data 
points as falling into the same group).

Value Alignment The task of aligning the values and overall goals of 
machines with their human users.

Virtual Machine
(or Computer Program)

The technical name for a computer program, or a 
simulated computing machine capable of running 
on different architectures.

Weak AI The development of a nonsentient but functionally 
useful machine that can solve prespecified cogni-
tive problems. All contemporary AI is “weak” in 
this sense.

Weight The strength of connections between nodes in 
a neural network. Weights are modified through 
learning as the machine starts to approximate 
correct responses.
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